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A Monte Carlo study of lattice trails 
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Abstract. We use the recently developed Monte Carlo algorithm of Berretti and  Sokal to 
study the critical behaviour of lattice trails on the square a n d  triangular lattices. We find 
support  for the earlier belief that  this problem is in the same universality class as  self- 
avoiding walks. Accepting this, we obtain the most precise estimates to date of the 
connective constants.  I t  is argued that this problem is particularly well suited to study by 
Monte Carlo methods rather than by series analysis. 

1. Introduction 

In two earlier papers (Guttmann 1985a, b, hereafter referred to as I and 11) an extensive 
analytic and  numerical study of the configurational properties of lattice trails was 
made. Lattice trails bear the same relationship to self-avoiding walks as does the 
problem of bond percolation to the problem of site percolation. For a SAW we are 
interested in enumerating all connected paths such that no  site is visited more than 
once (this of course also precludes multiple bond occupancy). For the problem of 
lattice trails, the problem is to enumerate all connected paths such that no bond is 
revisited, but sites may be revisited. 

In I we proved that the trails problem is in the same universality class as the SAW 

problem for the two-dimensional hexagonal lattice and the three-dimensional Lave 
lattice, but no proof has been found for lattices of a higher coordination number. 
Nevertheless, we argued in I and I1 that an extensive body of numerical evidence 
indicated that this was also the case for the other regular two- and three-dimensional 
lattices. However, despite the availability of quite long series expansions for the trail 
generating function, the results of this analysis were comparatively disappointing, 
insofar as they indicated a critical exponent y of the trail generating function of around 
1.40, compared to the S A W  value of y = 1.343 75. 

This was ascribed to the presence of non-physical singularities quite close to the 
circle of convergence of the generating function, complicated by a more intrusive 
confluent singularity structure than that prevailing for SAW. 

For the mean square end-to-end distance exponent v the situation was better. In  
I1 we studied the difference v,,, - vtrdlls and found this to be indistinguishable from 0 
for the square lattice. Subsequently, Rapaport (1985) also studied the trails problem, 
both by series expansion methods (for the three-dimensional FCC lattice) and by Monte 
Carlo methods in order to estimate v. His results were entirely consistent with those 
found in the earlier study discussed. 
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514 A J Guttmann and T R Osborn 

In this paper we use the appropriate modified Berretti-Sokal (1985, hereafter 
referred to as BS) Monte Carlo algorithm to study the trails problem on the square 
and triangular lattices. We only sketch the method here. I t  is a dynamic MC algorithm, 
generating trails in the grand canonical ensemble 

(1) 

where f N  is the number of distinct N-step trails, and P is a user-chosen parameter 
which determines the expectation value of the length of the trails. The algorithm starts 
with the empty trail, and each step of the algorithm consists either of appending a 
step to the end of the walk (randomly in one of the 4 lattice directions), or else deleting 
the last step. In the former case, the step is allowed if the resultant path is a trail. 
The relative probabilities of these two types of moves are chosen so as to satisfy 
detailed balance for the measure ( 1 ) .  These conditions allow a trail of arbitrary length 
to evolve to or from the initial configuration (the empty trail), as is clearly necessary 
for the ergodicity of the algorithm. 

Prob(length = N )  =constant x P N t N  

The trails are assumed to have the asymptotic behaviour 

for large N, and we use the maximum likelihood estimation ( M L E )  of BS to determine 
the connective constant A and the critical exponent y. The autocorrelation time of the 
algorithm, 7, is of order (N) '  and is estimated numerically using standard methods of 
statistical time series analysis, as elucidated by BS. 

The parameter /3 is related to the average trail size by 

( N ) = P A Y l ( l - P A ) .  (3 )  

As there is little doubt that the model is in the same universality class as SAW, our 
main purpose was to see if Monte Carlo methods, which enable us to study longer 
walks than those available by series expansions, would produce more accurate estimates 
of the connective constant A, and also shed some light on why the series expansions 
for the trails problem behave substantially worse than those for the SAW problem. 

2. Data generation and analysis 

For both the square and triangular lattices we generated a sample of lo9 Monte Carlo 
iterations. Each of the two data sets took approximately 50 h CPU time on a Perkin 
Elmer 3220 minicomputer. For the square lattice data the run was performed with 
/3 = 0.365, corresponding to ( N )  = 191, while for the triangular lattice the run was 
performed with P = 0.2195, corresponding to ( N )  = 199. Data were taken once every 
10' MC iterations, and in doing the statistical analysis we skipped the data from the 
first 10' iterations; since this is some 500 times the algorithm's autocorrelation time 
(given below), there should be no doubt that equilibrium has been reached. Details 
of the random number generator used are given in Guttmann et a1 (1986). 

An autocorrelation analysis gave T = 200 000 MC iterations, so that T = 5(  N)',  as 
for SAW (see BS, Guttmann et a1 1986). 

Following our analysis for the SAW case, we first performed a maximum-likelihood 
estimation of y and A, using the ansatz 

(4) t = A "' ( N + 3) ' - ' A [  1 + a ,/ ( N + 3) 1 for N > Nmin 
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for a range of values of a ,  and N,,,; the results, for the triangular lattice, are shown 
in table 1. The errors shown are 95% confidence intervals, and represent statistical 
errors only. A corresponding table for SAW is given in Guttmann et a1 (1986). As in 
that case, for N,,,=O, the estimates are biased by strong systematic error due to 
corrections to scaling not included in (4), while as N,, ,  increases, so does the statistical 
error, as the sample size clearly decreases with increasing Nmi,. 

Following BS, we attempt to invoke their ‘flatness criterion’ in order to find a region 
for which the ‘true’ values of A and y are included. This turns out to be quite 
difficult-again paralleling the SAW case-and we are forced to include all values of 
a ,  in the range -0.5 < a ,  < 0.75 and 20 < N,,, < 80. For N = 120 the statistical errors 
are already too large. In this way we arrive at conservative estimates for both A and 
y ,  by using all bold entries in table 1, and so obtain 

A =4.5258*0.0016*0.0015 (triangular) 

y = 1.31 *0.12*0.08 

where the first errors represent systematic error due to unincluded corrections to scaling 

Table 1. Two-parameter maximum-likelihood estimates of A and y, assuming (4 ) .  Error 
bars include statistical errors only, and represent 95% confidence limits. 

N 

a 0 20 40 80 120 

-0.75 4.525 145 
0.001 020 
1.344 355 
0.039 101 

-0.50 4.524 992 
0.001 020 
1.354 553 
0.039 001 

-0.25 4.524 844 
0.001 020 
1.364415 
0.038 908 

0.00 4.524 702 
0.001 020 
1.373 963 
0.038 822 

0.25 4.524 565 
0.001 020 
1.383 216 
0.038 741 

0.50 4.524 433 
0.001 020 
1.392 194 
0.038 666 

0.75 4.524 306 
0.001 020 
1.400 91 1 
0.038 595 

4.525 528 
0.001 243 
1.323 301 
0.057 205 
4.525 485 
0.001 243 
1.327411 
0.057 204 
4.525 442 
0.001 243 
1.331 486 
0.057 203 
4.525 399 
0.001 244 
1.335 524 
0.057 202 
4.525 357 
0.001 244 
I .339 528 
0.057 201 
4.525 316 
0.001 245 
1.343 497 
0.057 201 
4.525 274 
0.001 245 
1.347 431 
0.057 200 

4.525 542 
0.001 458 
1.322 886 
0.076 908 
4.525 515 
0.001 458 
1.325 860 
0.076912 
4.525 489 
0.001 459 
1.328 817 
0.076 916 
4.525 463 
0.001 459 
1.331 756 
0.076 919 
4.525 437 
0.001 459 
1.334 679 
0.076 923 
4.525 4 1 1 
0.001 459 
1.337 586 
0.076 927 
4.525 386 
0.001 460 
1.340 475 
0.076 931 

4.526 547 
0.001 876 
1.245 548 
0.121 722 
4.526 533 
0.001 876 
1.247 606 
0.121 729 
4.526 519 
0.001 877 
1.249 656 
0.121 735 
4.526 504 
0.001 877 
1.251 698 
0.121 741 
4.526 490 
0.001 877 
1.253 733 
0.121 747 
4.526 476 
0.001 877 
1.255 761 
0.121 753 
4.526 462 
0.001 877 
1.257 781 
0.121 759 

4.527 284 
0.002 349 
1.177 650 
0.178 953 
4.527 274 
0.002 349 
1.179 273 
0.178 959 
4.527 625 
0.002 350 
1.180 891 
0.178 966 
4.527 255 
0.002 350 
1.182 505 
0.178 973 
4.527 246 
0.002 350 
1.184 115 
0.178 980 
4.527 236 
0.002 350 
1.185 721 
0.178 987 
4.527 227 
0.002 350 
1.187 321 
0.178 993 

160 

4.528 261 
0.002 876 
1.077 054 
0.250 524 
4.528 254 
0.002 876 
1.078 41 1 
0.250 531 
4.528 247 
0.002 876 
1.079 765 
0.250 539 
4.528 240 
0.002 877 
1.081 117 
0.250 546 
4.528 233 
0.002 877 
1.082 465 
0.250 553 
4.528 226 
0.002 877 
1.083 810 
0.250 560 
4.528 220 
0.002 877 
1.085 152 
0.250 568 

200 

4.528 731 
0.003 502 
1.027 321 
0.342 247 
4.528 725 
0.003 502 
1.028 496 
0.342 255 
4.528 720 
0.003 502 
1.029 669 
0.342 263 
4.528 714 
0.003 502 
1.030 839 
0.342 270 
4.528 709 
0.003 502 
1.032 008 
0.342 278 
4.528 704 
0.003 503 
1.033 173 
0.342 286 
4.528 699 
0.003 503 
1.034 337 
0.342 293 
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(95”/0 confidence limits-subjective) and the second error is statistical error taken at 
Nmi, = 40 (95% confidence limits). 

For the square lattice data, a similar table (not shown) gave a wide spread of values 
for which the flatness criteria applied, -0.5 < a ,  < 0.5 and 20 < N,,, < 120, and combin- 
ing these gave the estimates 

A = 2.7205 f 0.0007 * 0.0009 

y = 1.348 * 0.099 * 0.0079. 

(square) 

It might be argued that the ansatz (4) ignores non-analytic correction-to-scaling terms, 
which seem likely to be present in this problem. However, due to the large statistical 
errors, it is not possible to distinguish between a non-analytic and analytic correction 
to scaling term-indeed, any such correction is likely to be effectively represented by 
a change in a, .  

As in the SAW case, these results are consistent with Nienhuis’ (1982, 1984) exact 
result y = $, but with such wide error bars as to be of little interest. If we accept this 
result, however, and re-analyse our data with this value of y fixed, we obtain rather 
better results. 

In table 2 we show the results for the square lattice data, and use those shown in 
bold to which our, by now relatively unselective, flatness criterion applies. That is, 
we have chosen the same range of values as used above in the unbiased analysis. A 
similar analysis is applied to the triangular lattice data (not shown) and our results in 
the two cases are 

A = 2.720 59 * 0.000 42 * 0.000 37 

A = 4.525 26 * 0.000 15 * 0.000 65 

(square) 

(triangular). 
(7) 

The estimates and error bars in tables 1 and 2 were computed by using all data as 
if they were independent, and then multiplying the MLE theory error bars by a factor 
( 2 ~ ) ” ~  to adjust for the effects of autocorrelations. As shown in Guttmann et a1 (1986), 
alternative analyses seem to give indistinguishably close results. 

Table 2. One-parameter maximum likelihood estimates of A, assuming (4), with y = # .  
Error bars include statistical errors only, and represent 95% confidence limits. 

N 

a 0 20 40 80 120 160 200 

-0.75 2.720 734 2.720 656 2.720 579 2.720 590 2.720 516 2.720 473 2.720 526 
0.000 336 0.000 349 0.000 367 0.000 410 0.000 463 0.000 523 0.000 592 

-0.50 2.720 779 2.720 679 2.720 595 2.720 600 2.720 523 2.720 478 2.720 530 
0.000 335 O.OO0 349 O.OO0 367 O.OO0 410 O.OO0 463 0.000 523 0.000 592 

-0.25 2.720 825 2.720 702 2.720 611 2.720 610 2.720 529 2.720 483 2.720 534 
0.000 334 O.OO0 349 O.OO0 367 0.000 410 O.OO0 462 0.000 523 0.000 592 

0.00 2.720 870 2.720 724 2.720 627 2.720 620 2.720 536 2.720 488 2.720 538 
0.000 3334 O.OO0 348 O.OO0 367 O.OO0 410 O.OO0 462 0.000 523 0.000 592 

0.25 2.720 914 2.720 747 2.720 643 2.720 629 2.720 543 2.720 493 2.720 542 
0.000 333 O.OO0 348 O.OO0 367 O.OO0 410 O.OO0 462 0.000 523 0.000 592 

0.50 2.720 958 2.720 769 2.720 659 2.720 639 2.720 550 2.720 498 2.720 546 
0.000 332 O.OO0 348 O.OO0 366 O.OO0 410 O.OO0 462 0.000 523 0.000 592 

0.75 2.721 001 2.720 792 2.720 674 2.720 649 2.720 557 2.720 503 2.720 550 
0.000 332 0.000 347 0.000 366 0.000 410 0.000 462 0.000 523 0.000 592 
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3. Discussion 

If we now compare these results with the series results obtained in 11, we find satisfactory 
agreement. For the triangular lattice case the series estimate was A = 4.524* 0.004, 
while for the square lattice the series estimate was A = 2.7215 * 0.002. It can be seen 
that the MC estimates are significantly more accurate than the series estimates in this 
case-in contrast to the S A W  case-and allow us to rule out a conjecture of Malakis 
(1975) that A(square) = e = 2.718 28 . . . at the 99.9% confidence level. 

The trails problem is seen to be one in which Monte Carlo analysis does a better 
job than does series analysis, whereas for the SAW problem and perhaps for the Ising 
problem the opposite is the case. As noted in 11, this is likely to be due to the presence 
of competing singularities, as well as the effect of more prominent correction-to-scaling 
terms. The effect of these on our ansatz (4) has already been discussed in Guttmann 
er a1 (1986). The upshot of these remarks though is that asymptotic behaviour has not 
yet set in at trail lengths of 14-22, which is the size of the maximum length trails 
accessible by series analysis. Thus this problem is a particularly appropriate one for 
MC algorithms to be tested against. 

The trails problem was also studied by Zhou and Li (1984) using series analysis. 
Their conclusion, that the problem is in a distinct universality class from SAW, is not 
supported. Rather, it adds weight to our conclusion that this problem does not readily 
lend itself to study by series analysis, but that Monte Carlo methods are more 
appropriate. 
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